Quantity
Total
Product successfully added to your shopping cart
There are 0 items in your cart. There are 0 items in your cart.
Total products
Total shipping To be determined
Total
Continue shopping Proceed to checkout
CAS Number: 1304-56-9
Linear Formula: BeO
Molecular Weight: 25.01
IUPAC Name: Beryllium oxide
Other Names: Beryllium(II) monoxide, Oxoberyllium, Beryllia, Thermalox, Bromellite, Thermalox 995
Beryllium oxide (BeO), also known as beryllia, is an inorganic compound with the formula BeO. This colourless solid is a notable electrical insulator with a higher thermal conductivity than any other non-metal except diamond, and exceeds that of most metals. As an amorphous solid, beryllium oxide is white. Its high melting point leads to its use as a refractory. It occurs in nature as the mineral bromellite. Historically and in materials science, beryllium oxide was called glucina or glucinium oxide. Formation of BeO from beryllium and oxygen releases the highest energy per mass of reactants for any chemical reaction, close to 24 MJ/kg.
High-quality crystals may be grown hydrothermally, or otherwise by the Verneuil method. For the most part, beryllium oxide is produced as a white amorphous powder, sintered into larger shapes. Impurities, like carbon, can give a variety of colours to the otherwise colourless host crystals.
Sintered beryllium oxide is a very stable ceramic. Beryllium oxide is used in rocket engines, and as a transparent, protective over-coating on aluminised telescope mirrors.
Beryllium oxide is used in many high-performance semiconductor parts for applications such as radio equipment because it has good thermal conductivity while also being a good electrical insulator. It is used as a filler in some thermal interface materials such as thermal grease. Some power semiconductor devices have used beryllium oxide ceramic between the silicon chip and the metal mounting base of the package to achieve a lower value of thermal resistance than a similar construction of aluminium oxide. It is also used as a structural ceramic for high-performance microwave devices, vacuum tubes, magnetrons, and gas lasers. BeO has been proposed as a moderator for naval marine high-temperature gas-cooled reactors (MGCR) as well as NASA's Kilopower nuclear reactor for space applications.